A New Construction of Einstein Self-dual Metrics
نویسندگان
چکیده
We give a new construction of Ricci-flat self-dual metrics which is a natural extension of the Gibbons–Hawking ansatz. We also give characterisations of both these constructions, and explain how they come from harmonic morphisms.
منابع مشابه
Warped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملToric Self-dual Einstein Metrics as Quotients
We use the quaternion Kähler reduction technique to study old and new selfdual Einstein metrics of negative scalar curvature with at least a two-dimensional isometry group, and relate the quotient construction to the hyperbolic eigenfunction Ansatz. We focus in particular on the (semi-)quaternion Kähler quotients of (semi-)quaternion Kähler hyperboloids, analysing the completeness and topology,...
متن کاملSelf-dual metrics on toric 4-manifolds: Extending the Joyce construction
Toric geometry studies manifolds M2n acted on effectively by a torus of half their dimension, T . Joyce shows that for such a 4-manifold sufficient conditions for a conformal class of metrics on the free part of the action to be self-dual can be given by a pair of linear ODEs and gives criteria for a metric in this class to extend to the degenerate orbits. Joyce and Calderbank-Pedersen use this...
متن کاملToric Anti-self-dual Einstein Metrics via Complex Geometry
Using the twistor correspondence, we give a classification of toric anti-self-dual Einstein metrics: each such metric is essentially determined by an odd holomorphic function. This explains how the Einstein metrics fit into the classification of general toric anti-self-dual metrics given in an earlier paper [7]. The results complement the work of Calderbank–Pedersen [6], who describe where the ...
متن کاملIntegrability versus Separability for the Multi-centre Metrics
The multi-centre metrics are a family of euclidean solutions of the empty space Einstein equations with self-dual curvature. For this full class, we determine which metrics do exhibit an extra conserved quantity quadratic in the momenta, induced by a Killing-Stäckel tensor. Our systematic approach brings to light a subclass of metrics which correspond to new classically integrable dynamical sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002